Ground-level ozone concentration over Spain
نویسندگان
چکیده
Introduction Conclusions References
منابع مشابه
تخمین غلظت ازن در سطح زمین با استفاده از روش رگرسیون خطی چند متغیره و تعیین پارامترهای موثر
Background and Objective: Ground level ozone (O3) is one of most dangerous pollutants for human health in urban areas. The aim of this study was to identify the factors affecting the formation of ozone and modeling the spatial and temporal variations of ozone concentration in Tehran metropolitan area. Materials and Methods: The data used in this research included meteorological data and pollut...
متن کاملAssessment of Kalman filter bias-adjustment technique to improve the simulation of ground-level ozone over Spain.
The CALIOPE air quality modelling system has been used to diagnose ground level O(3) concentration for the year 2004, over the Iberian Peninsula. We investigate the improvement in the simulation of daily O(3) maximum by the use of a post-processing such as the Kalman filter bias-adjustment technique. The Kalman filter bias-adjustment technique is a recursive algorithm to optimally estimate bias...
متن کاملShort-term prediction of atmospheric concentrations of ground-level ozone in Karaj using artificial neural network
Air pollution is a challenging issue in some of the large cities in developing countries. Air quality monitoring and interpretation of data are two important factors for air quality management in urban areas. Several methods exist to analyze air quality. Among them, we applied the dynamic neural network (TDNN) and Radial Basis Function (RBF) methods to predict the concentrations of ground-level...
متن کاملStochastic model to forecast ground-level ozone concentration at urban and rural areas.
Stochastic models that estimate the ground-level ozone concentrations in air at an urban and rural sampling points in South-eastern Spain have been developed. Studies of temporal series of data, spectral analyses of temporal series and ARIMA models have been used. The ARIMA model (1,0,0) x (1,0,1)24 satisfactorily predicts hourly ozone concentrations in the urban area. The ARIMA (2,1,1) x (0,1,...
متن کاملShort-term prediction of atmospheric concentrations of ground-level ozone in Karaj using artificial neural network
Air pollution is a challenging issue in some of the large cities in developing countries. Air quality monitoring and interpretation of data are two important factors for air quality management in urban areas. Several methods exist to analyze air quality. Among them, we applied the dynamic neural network (TDNN) and Radial Basis Function (RBF) methods to predict the concentrations of ground-level...
متن کامل